跳到主要内容

张峻凡

📧 email: jfzhang@imr.ac.cn

张峻凡

研究方向

RVE-FEM

开发了多种建模方法,能够创建颗粒增强、短纤维增强、层状、空间构型化、铝粉-陶瓷粉-空隙等多种代表性体积单元模型(RVE)。

其将RVE模拟方法扩展到CEL与SPH方法中,可以进行粉末和相尺度的大塑性变形模拟。

利用编写子程序,实现铝基复合材料受载变形过程中的载荷传递强化、热错配强化、几何必须位错强化等多种强化机制的计算。

铝的粉末冶金

实现铝合金的无压烧结制备。通过铝粉的成分配比、冷压过程的压力调控、烧结温度和气氛的调控,实现99%以上致密度铝合金材料的无压烧结。

基于热等静压过程的多尺度有限元模拟,实现SiCp/Al复合材料的热等静压近净成形。利用包套型芯的材料和结构设计,实现复杂铝基零件的热等静压高精度成形。

碳纤维增强铝

通过压力浸渗法制备碳纤维增强铝基复合材料,实现材料抗拉强度910MPa。

光源与中子源

基于上海同步辐射光源、中国散裂中子源、北京高能同步辐射光源等大科学装置:开展了铝基材料的残余应力表征研究,开发了多种超低残余应力制备工艺(构件尺度与晶粒尺度残余应力均显著降低);开展了铝基复合材料粉末冶金制备过程的原位成像研究,研究了合金元素、空隙形貌、温度、压力等因素对铝基复合材料热压致密化过程的影响规律,辅助开发了铝材粉末冶金工艺;开展了铝基复合材料服役过程中拉伸裂纹、疲劳裂纹的产生和演化规律,为铝基复合材料的成分优化奠定了理论基础。

教育工作经历

2020.07 - 至今,中国科学院金属研究所;

2017.09 - 2018.09,德国Fraunhofer协会工业数学研究所(ITWM);

2014.09 - 2020.06,中国科学院大学金属研究所;

2010.09 - 2014.07,沈阳工业大学;

发表论文

[1] Chen S, Ma K, Zhang J, Deng S, He L, Yin W, et al. Achieving ultra-high strength-ductility aluminum matrix composites via hot deformation-induced nano Al2O3 intragranular distribution. Journal of Materials Science & Technology 2026;262:82–96. https://doi.org/10.1016/j.jmst.2025.10.037.

[2] Tang X, Zhang H, Xue P, Wu L, Zhang J, Zhang L, et al. Ultrahigh strength heat-resistant Al-Fe-V-Si-Sc alloy fabricated by laser powder bed fusion. Journal of Materials Science & Technology 2025;239:299–306. https://doi.org/10.1016/j.jmst.2025.02.060.

[3] Yu Z, Zhang JF, Feng XM, Liu ZY, Wang D, Xiao BL, et al. Why peak-aged TiB2/AlZnMgCu composite exhibits lower yield strength: Early particle fracture insights. Materials Science and Engineering: A 2025;947:149259. https://doi.org/10.1016/j.msea.2025.149259.

[4] Feng H, Yang S, Yang S, Zhou L, Zhang J, Ma Z. Microstructure design and toughening mechanisms of bimodal CNT/Al composites via refined explicit FEM. Thin-Walled Structures 2025;214:113382. https://doi.org/10.1016/j.tws.2025.113382.

[5] Gu LM, Zhang J, Liu Y, Liu ZY, Wang QZ, He LH, et al. Macroscopic and microscopic residual stress relief in SiC/Al composites: Effects of annealing and cryogenic treatment. Journal of Materials Science & Technology 2025;254:106–16. https://doi.org/10.1016/j.jmst.2025.08.013.

[6] Shi BM, Pang YT, Shan BH, Wang BB, Liu Y, Xue P, et al. Microstructure Evolution and Fracture Behavior of (B4C+Al2O3)/Al Friction Stir Welded Joints. Acta Metall Sin (Engl Lett) 2025;38:1513–26. https://doi.org/10.1007/s40195-025-01879-1.

[7] Feng XM, Zhang JF, Wang D, Deng B, Wang J, Xiao BL, et al. Effect of ball milling on densification and alloying in SiCp/Al powder metallurgy processes. Materials Characterization 2024;218:114583. https://doi.org/10.1016/j.matchar.2024.114583.

[8] Gu LM, Zhang JF, Liu ZY, Liu XL, Xiao BL, Ma ZY. Mechanical behavior analysis on SiC/Al composites via in-situ neutron diffraction combined with finite element methods. Materials Science and Engineering: A 2024;912:147003. https://doi.org/10.1016/j.msea.2024.147003.

[9] Feng H, Yang S, Yang S, Zhou L, Zhang J, Ma Z. Strengthening Mechanisms and Mechanical Characteristics of Heterogeneous CNT/Al Composites by Finite Element Simulation. Acta Metall Sin (Engl Lett) 2024. https://doi.org/10.1007/s40195-024-01767-0.

[10] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, et al. 深冷循环对SiC/Al复合材料的宏微观残余应力影响. 金属学报 2024:0–0. https://doi.org/10.11900/0412.1961.2024.00059.

[11] 杨光, 金延文, 张峻凡, 王东. 冷热循环下铝基复合材料构件尺寸稳定性影响因素研究. 精密成形工程 2024;16:87–94. https://doi.org/10.3969/j.issn.1674-6457.2024.04.011.

[12] 石礼硕, 朱智, 吴迪, 张峻凡, 肖伯律, 马宗义. 双模CNT/Al复合材料变形过程的代表性体积单元模拟. 精密成形工程 2024;16:71–8. https://doi.org/10.3969/j.issn.1674-6457.2024.04.009.

[13] 庞雨婷, 张峻凡, 王文广, 肖伯律, 马宗义. 基于代表性体积单元的双模铝基复合材料性能拟实研究. 精密成形工程 2024;16:36–44.

[14] 冯效铭, 张峻凡, 王东, 肖伯律, 马宗义. 颗粒增强铝基复合材料热等静压近净成形有限元模拟. 精密成形工程 2024;16:1–9.

[15] 边鹏博, 朱士泽, 张峻凡, 肖伯律, 马宗义. 无压烧结温度对15% SiC/2009Al 复合材料微观组织与力学性能的影响. 材料导报 2024;52. https://doi.org/10.11868/j.issn.1001-4381.2023.000045.

[16] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对 15% SiC/2009Al 复合材料力学性能的影响. 材料研究学报 2024;38:401–9. https://doi.org/10.11901/1005.3093.2023.125.

[17] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望. 金属学报 2023;59:457–66. https://doi.org/10.11900/0412.1961.2022.00605.

[18] Zan YN, Lei X, Zhang JF, Wang D, Wang QZ, Xiao BL, et al. Superb Strengthening Effect of Net-Like Distributed Amorphous Al2O3 on Creep Resistance of (B4C + Al2O3)/Al Neutron-Absorbing Materials. Acta Metall Sin (Engl Lett) 2022;35:2007–13. https://doi.org/10.1007/s40195-022-01396-5.

[19] Ma K, Li XN, Zhang JF, Liu ZY, Xiao BL, Ma ZY. Tension-compression fatigue behaviors of uniform and bimodal carbon nanotube/Al-Cu-Mg composites. Materials Characterization 2022;192:112193. https://doi.org/10.1016/j.matchar.2022.112193.

[20] Wang ZW, Zhang JF, Xie GM, Wu LH, Zhang H, Xue P, et al. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel. J Mater Sci Technol 2022;102:213–23. https://doi.org/10.1016/j.jmst.2021.06.031.

[21] Wang WG, Zhang JF, Zan YN, Liu ZY, Wang D, Xiao BL, et al. Failure mechanism of nano-structural interfacial layer in Mg matrix composites reinforced with Cf. Composites Part A: Applied Science and Manufacturing 2022;154:106780. https://doi.org/10.1016/j.compositesa.2021.106780.

[22] Zhang JF, Zhang XX, Liu ZY, Wang QZ, Xiao BL, Ma ZY. A rigid body dynamics simulation enhanced representative volume element builder for CNT/Al composite. International Journal of Mechanics and Materials in Design 2022;18:407–22. https://doi.org/10.1007/s10999-021-09587-1.

[23] Zhang JF, Zhang XX, Andrä H, Wang QZ, Xiao BL, Ma ZY. A fast numerical method of introducing the strengthening effect of residual stress and strain to tensile behavior of metal matrix composites. J Mater Sci Technol 2021;87:167–75. https://doi.org/10.1016/j.jmst.2021.01.079.

[24] Zhang XX, Zhang JF, Liu ZY, Gan WM, Hofmann M, Andrä H, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction. J Mater Sci Technol 2020;54:58–68. https://doi.org/10.1016/j.jmst.2020.04.016.

[25] Yang C, Zhang JF, Ma GN, Wu LH, Zhang XM, He GZ, et al. Microstructure and mechanical properties of double-side friction stir welded 6082Al ultra-thick plates. J Mater Sci Technol 2020;41:105–16. https://doi.org/10.1016/j.jmst.2019.10.005.

[26] Liu ZY, Ma K, Fan GH, Zhao K, Zhang JF, Xiao BL, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation. Carbon 2020;157:602–13. https://doi.org/10.1016/j.carbon.2019.10.080.

[27] Zhang JF, Andrä H, Zhang XX, Wang QZ, Xiao BL, Ma ZY. An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites. Compos Struct 2019;226:111281. https://doi.org/10.1016/j.compstruct.2019.111281.

[28] Zhang JF, Zhang XX, Wang QZ, Xiao BL, Ma ZY. Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading. Mech Mater 2018;122:96–103. https://doi.org/10.1016/j.mechmat.2018.04.011.

[29] Zhang JF, Zhang XX, Wang QZ, Xiao BL, Ma ZY. Simulations of deformation and damage processes of SiCp/Al composites during tension. Journal of Materials Science & Technology 2018;34:627–34. https://doi.org/10.1016/j.jmst.2017.09.005.